OPP OFFICIAL RECORD HEALTH EFFECTS DIVISION SCIENTIFIC DATA REVIEWS **EPA SERIES 361**

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

November 13, 2003

MEMORANDUM

2,4-DB [4-(2,4-Dichlorophenoxy)butyric acid]. Chemical 030801. HED Review SUBJECT:

of a Confined Rotational Crop Study with 14C-2,4-DB using Carrots, Lettuce and

Barley (860.1850). DP Barcode D290502 [MRID 43004301].

FROM:

Danette Drew, Chemist DV

Reregistration Branch 3

Health Effects Division (7509C)

THROUGH: Whang Phang, Branch Senior Scientist

Reregistration Branch 2

Health Effects Division (7509C)

TO:

Cecelia Watson, Chemical Review Manager

Special Reregistration and Review Division (7508C)

The 2,4-DB Task Force has submitted a confined rotational crop study for the determination and characterization of residues of 2,4- DB in rotated crops. This study has been evaluated in the attached Data Evaluation Record (filenames 43004301.der).

These data have been reviewed by Dynamac Corp. under contract to the Agency and have undergone secondary review in Reregistration Branch 3 of the Health Effects Division to reflect current policies.

HED Records Center Series 361 Science Reviews - File R096567 - Page 2 of 24

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

Primary Evaluator Danette Drew, Chemist

Reregistration Branch 3 Health Effects Division

(7509C)=

Reviewer Whang Phang,

Branch Senior Scientist Reregistration Branch 2 Health Effects Division

(7509C)

Date: 9/29/03 4

Date: 11/13/03

These data have been reviewed by Dynamac Corp.(8/21/03) under contract to the Agency and have undergone secondary review in Reregistration Branch 3 of the Health Effects Division to reflect current policies.

STUDY REPORT:

43004301 O'Neal, S. and Johnson, T. (1993) A Confined Rotational Crop Study with ¹⁴C-2,4-DB Using Carrots (*Daucus carota*), Lettuce (*Lactuca sativa*), and Barley (*Hordeum vulgare*). Lab Project Number: 508. Lab Report Number: 1522. Unpublished study prepared by PTRL East, Inc. (Lexington, KY) and submitted by the 2,4-DB Task Force (Raleigh, NC). 310 p.

EXECUTIVE SUMMARY:

The 2,4-DB Task Force submitted the results of a confined rotational crop study with 2,4-DB. Uniformly ring labeled [14C]2,4-DB was sprayed directly onto the soil surface of sandy loam soil at a target rate of 1.5 lb ai/A; the actual application rate was verified at 1.65 lb ai/A. Rotational crops consisting of barley (a small grain crop), carrot (a root crop), and lettuce (a leafy vegetable crop) were planted 30, 120, and 365 days after treatment (DAT). At appropriate crop growth stages, immature and mature samples of the rotated crops were collected from each plantback interval (PBI). The collected samples were stored frozen prior to residue characterization and identification. Sample storage conditions and intervals are supported by adequate storage stability data. The field phase of the study was conducted at a small fenced outdoor plot in Madera, CA, and the analytical phase was performed by PTRL East, Inc. (Richmond, KY).

The total radioactive residues (TRR; expressed as 2,4-DB equivalents) in/on treated rotational crop commodities were, overall, low and ranged from <0.01 ppm (365-DAT carrot root) to 0.07 ppm (120-DAT barley straw). There appears to be no discernible trend as to whether residues would increase or decrease at longer PBI because of low TRR.

2,4-DB/PC Code 030801/The 2,4-DB Task Force OPPTS 860.1850 Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

Radioactive residues in/on rotational crop commodities were sequentially extracted with a polar solvent (methanol:water) and a non-polar solvent (ethyl acetate) followed by hydrolysis with hydrochloric acid and sodium hydroxide. Extracts and hydrolysates which contained radioactivity level of >0.01 ppm were analyzed by adequate chromatographic techniques (HPLC and TLC).

The parent compound, 2,4-DB, was not detected in any plant matrix at any rotational interval. The metabolites identified in rotational crop samples include the phenols (2-chloro-4-hydroxyphenol; 2,4-dichloro-4-hydroxyphenol; 2,4-dichloro-3-hydroxyphenol; and 2,3-dichloro-4-hydroxyphenol), the phenoxyacetic acids (2,3-dichloro-4-hydroxyphenoxyacetic acid; and 2,4-dichloro-3-hydroxyphenoxyacetic acid) and 1,4-benzoquinone. Each metabolite identified comprised <3% of TRR except for 2,4-dichlorophenol which was detected at 10.91% of TRR in 120-DAT barley forage. No single metabolite was observed at a residue level exceeding 0.01 ppm.

The remaining nonextractable residues of 365-DAT barley forage were subjected to cell wall fractionation in order to determine the nature of bound residues. The nonextractable residues were characterized to be associated with cellulose (~26% TRR) and hemicellulose (~7% TRR), with minor amounts of starch and pectin (each <1% TRR), protein (~2% TRR), and lignin (<2% TRR).

The confined rotational crop studies showed that no significant residues of 2,4-DB were taken up in succeeding rotational crops. The registrant proposed that the major metabolic pathways in rotational crop matrices encompassed side chain degradation, chlorine shift and ring hydroxylation as demonstrated by the observed metabolites. β -oxidation of the side chain did not appear to be a metabolic pathway in rotational crops.

STUDY/WAIVER ACCEPTABILITY/DEFICIENCIES/CLARIFICATIONS:

Under the conditions and parameters used in the study, the confined rotational crop data are classified as scientifically acceptable. The acceptability of these studies for regulatory purposes will be addressed in the forthcoming U.S. EPA 2,4-DB Reregistration Eligibility Decision Document, Residue Chemistry Chapter.

COMPLIANCE:

Signed and dated GLP, Quality Assurance and Data Confidentiality statements were provided. No deviations from regulatory requirements were reported which would have an impact on the validity of the study.

A. BACKGROUND INFORMATION

2,4-DB is a FIFRA List A pesticide active ingredient classified as a plant growth regulator and

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

herbicide. The 2,4-DB nomenclature is listed in Table A.1. The physicochemical properties of the technical grade of 2,4-DB are presented in Table A.2.

TABLE A.1. 2,4-DB No	menclature					
Compound	Chemical Structure					
	CI CI OH					
Common name	2,4-DB					
Company code number	None specified					
IUPAC name	4-(2,4-dichlorophenoxy)butyric acid					
Chemical abstract name	4-(2,4-dichlorophenoxy)butanoic acid					
CAS registry number	94-82-6					
End-use products/EP	Refer to the Residue Chemistry Chapter of the 2,4-DB RED					

TABLE A.2. Physicochemical Propert	ies of the Technical Grade of 2,4-D	ов			
Parameter	Value	Reference			
Melting point/range	113.5-117.5 °C	D198970, 9/30/94, F. Toghrol			
pH (20 °C)	4.31 (1% w:v)	D198970, 9/30/94, F. Toghrol			
Density (22 °C)	1.461	D198970, 9/30/94, F. Toghrol			
Water solubility (25 °C)	46 ppm	D161375, 7/9/91, F. Toghrol			
Solvent solubility (25 °C)	100 g/L in acetone 50 g/L in ethanol	D161375, 7/9/91, F. Toghrol			
Vapor pressure	7.1 x 10 ⁻⁷ mm Hg at 23.6 °C	DEB No. 6823, 8/3/90, G. Makhijani			
Dissociation constant, pK _a	2.99 x 10 ⁻⁵	DEB No. 6823, 8/3/90, G. Makhijani			
Octanol/water partition coefficient, Log(Kow)	2.62	DEB No. 6823, 8/3/90, G. Makhijani			
UV/visible absorption spectrum	Three distinct bands at 202, 229, and 284 nm; no appreciable differences in the extinction coefficients between acidic, neutral, and basic solutions.	D286840, 1/9/03, S. Malak			

B. EXPERIMENTAL DESIGN

Information pertaining to the testing environment and location as well as soil characteristics is presented in Table B.1.1. Information pertaining to rotational crop varieties and harvesting procedures is detailed in Table B.1.2. Information pertaining to the radiolabeled test material is listed in Table B.2.1. The use pattern information is presented in Table B.3.1.

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

B. EXPERIMENTAL DESIGN

B.1. Test Site and Crop Information

TABLE B.1.1. Test Site Infor	mation								
	Soil characteristics (0-30 inches depth)								
Testing Environment and location	Туре	% Sand	% Silt	% Clay	% OM	pН	CEC (Meg/100 g)		
Two large fenced outdoor plots, each containing 3 subplots (2x20 ft) at Pan-Agricultural Research Station (Madera, CA).	Hanford sandy loam	63.2-71.3	19.2-25.2	7.5-11.5	0-0.5	6.2-6.7	5.6-6.4		

Daily minimum and maximum temperatures and precipitation were reported for the duration of the study, and plots were irrigated as needed using overhead sprinklers from an on-site well. Historical 30-year (1960-1989) monthly average temperatures were included. No unusual weather conditions were reported.

Crop/ crop group	Variety	Plantback intervals (days)	Growth stage at harvest	Harvested RAC	Harvesting procedure
Barley/Cereal grains and forage, fodder, and straw of cereal grains	Hordeum vulgare, var. NK-BB82-2	30, 120, and 365	Immature (25-111 DAP ¹); mature (160-230 DAP)	Immature forage, and mature straw and grain	None
Carrot/Root and tuber, and leaves of root and tuber vegetables	Daucus carota, var. Imperator 58		Immature (90-194 DAP); mature (160-228 DAP)	Tops and roots	Whole plants collected.
Lettuce/Leafy (except Brassica) vegetables	Lactuca sativa, var. Waldmaure Greenleaf		Immature (38-119 DAP); mature (66-140 DAP)	Leaves	Cut leaves above the soil surface.

¹ DAP = Days after planting.

B.2. Test Materials

TABLE B.2.1. Test Mat	erial Characteristics
Chemical structure	CI * OH
Radiolabel position	Uniformly in the phenyl ring
Batch No.	Lot CSL 2567150

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

TABLE B.2.1. Test Material Characteristics								
Radiochemical purity	98.8%							
Specific radioactivity	13.03 mCi/mmole; 52.33 μCi/mg (22,644 dpm/μg) test substance							
Code No. of specific batch	PTRL No. 508-1							

B.3. Study Use Pattern

TABLE B.3.1. Use Pattern In	formation
Chemical name	[phenyl-U-14C]2,4-DB
Composition of spray mixture	The radiolabeled material was dissolved in acetone and isotopically diluted with nonlabeled 2,4-DB.
Application method	The test substance was applied as a broadcast spray to the soil surface using a CO ₂ backpack sprayer, followed by a water rinse spray of equal volume. The control plot was sprayed with a solution of formulation blank, Triton X-100, water, and acetone.
Application rate	The target application rate was 1.5 lb ai/A. The verified application rate was 1.65 lb ai/A.
Number of applications	One
Timing of applications	30 days prior to the first planting rotation
РHI	N/A; application to bare soil

B.4. Identification/Characterization of Residues

B.4.1. Crops Sample Preparation

Immature and mature carrot samples were separated into tops and roots; if necessary the roots were dipped in water to remove excess surface soil and were blotted dry. Mature barley samples were separated into grain and straw. All samples from the 30-day rotation were extracted for metabolite characterization, but only the 120-day PBI carrot top (immature and mature), carrot root (immature), and barley forage, straw, and grain, and 365-day PBI barley and straw rotated crop samples were extracted.

Plant samples were first chopped with dry ice and frozen. Residues were repeatedly (3x) extracted with methanol:water (1:1, v:v) using a Brinkman Polytron and then filtered. The remaining filter cake was further extracted (2x) with saturated ethyl acetate (EtOAc) and filtered. The solids (nonextractable residues) remaining after solvent extractions were then subjected to sequential acid (0.1 N HCl at reflux for 4 hours) and base (0.1 N NaOH at reflux for 4 hours) hydrolysis and filtered. The acid and base hydrolysates were separately partitioned (3x) with saturated EtOAc which yielded organo- and aqueous-soluble fractions. In general, extracts and hydrolysates containing >0.01 ppm radioactivity were concentrated for HPLC analysis.

B.4.2. Analytical Methodology

Samples of rotational crop commodities were subjected to combustion/LSC (liquid scintillation

2,4-DB/PC Code 030801/The 2,4-DB Task Force OPPTS 860.1850 Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

counter) for TRR determination. Extracts and hydrolysates of rotated crop samples were radioassayed directly by LSC, and nonextractable radioactivity was determined by combustion/LSC.

The methanol:water extracts of immature lettuce, immature carrot tops, and barley forage samples from the 30-day PBI as well as the barley straw samples from the 120-day PBI were analyzed by HPLC; the radioactivity in all of the 365-day PBI sample extracts was low and did not warrant further analysis. Only the base hydrolysate of the 120-day barley forage contained sufficient radioactivity for HPLC analysis. The reversed phase HPLC systems used were equipped with a Supelco (RP C18) column and UV detector. Gradient mobile phases of methanol:acetonitrile (1:1, v:v) and 0.005 M KH₂PO₄ (pH 3) were used. HPLC fractions were collected, and radioactivity was determined by subsequent LSC or by direct radioassay using a radioactivity flow monitor. The following reference standards were used:

Radiolabeled standards: 2,4-dichlorophenoxybutyric acid; 2,4-dichlorophenoxyacetic acid; and 2,4-dichlorophenol.

Nonradiolabeled standards: 2,4-DB acid; 2,4-D; 2,4-D phenol; 4-chlorophenol; 2-chloro-4-hydroxyphenol; 4-chlorophenoxyacetic acid; 2,3-dichloroanisole; 4,6-dichlororesorinol; 1,4-benzoquinone; and 2,5-dichloro-4-hydroxyphenol.

Synthesized nonradiolabeled standards: 2,4-dichloro-6-hydroxyphenol; 2,3-dichloro-4-hydroxyphenol; 2,4-dichloro-5-hydroxyphenoxyacetic acid; 2,5-dichloro-4-hydroxyphenoxyacetic acid; 2,4-dichloro-6-hydroxyphenoxyacetic acid; 2,3-dichloro-4-hydroxyphenoxyacetic acid; 2,4-dichloro-3-hydroxyphenoxybutyric acid; 2,4-dichloro-5-hydroxyphenoxybutyric acid; 3,5-dichloro-5-hydroxyphenoxybutyric acid; 2,4-dichloro-6-hydroxyphenoxybutyric acid; 2,5-dichloro-4-hydroxyphenoxybutyric acid; 6-(2,4-dichlorophenoxy)hexanoic acid; 4-(2,4-dichlorophenoxy)methyl crotonate; and 10-(2,4-dichlorophenoxy)decanoic acid.

The identification of certain metabolites was confirmed by TLC analysis. The normal phase TLC system utilized silica gel 60 plates and a solvent phase of butanol:acetic acid:water (10:1:1, v:v:v). UV light was used to visualize co-spotted reference standards, and radioactivity was detected using an Imaging Scanner.

To determine the nature of bound residues, the nonextractable residues in 365-DAT barley forage was subjected to cell wall fractionation into various components. The solids (nonextractable residues) were sequentially subjected to buffer extraction, starch digestion, protein digestion, pectin extraction, lignin extraction, hemicellulose extraction, and cellulose hydrolysis. A brief discussion of each extraction/digestion follows; following each step, the extract was filtered and the residue on the filter wash was carried onto the next extraction/digestion step.

- -Buffer extraction with potassium phosphate buffer (pH 7), shaken for 10 minutes.
- -Starch digestion with α -amylase, incubated at 30 °C for ~20 hours.

2,4-DB/PC Code 030801/The 2,4-DB Task Force OPPTS 860.1850 Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

- -Protein digestion with Pronase E, incubated at 25 °C for ~20 hours.
- -Pectin extraction with sodium acetate/EDTA (pH 4.5), incubated at 80 °C for ~6 hours.
- -Lignin extraction with glacial acetic acid and sodium chlorite, incubated at 70 °C for ~1 hour; repeated three more times and the filtrate adjusted to pH 7-9 with 1 M NaOH.
- -Hemicellulose extraction with 24% potassium hydroxide, shaken for 24 hours; the pH was adjusted to 4.5 with 6 N acetic acid, shaken for 1 hour, and centrifuged.
- -Cellulose hydrolysis with sulfuric acid, shaken for ~4 hours; 24% potassium hydroxide was added and vortexed; the pH was adjusted to 6.5-7.5 with additional potassium hydroxide, and water was added until the precipitated potassium sulfate dissolved.

C. RESULTS AND DISCUSSION

Total radioactive residues (TRR) in rotational crops are reported in Table C.2.1. At the 30-day PBI, TRR ranged from 0.01 to 0.06 ppm. At the 120-day PBI, TRR ranged from 0.01 to 0.07 ppm. At the 365-day PBI, TRR ranged from <0.01 to 0.02 ppm. There was no clear pattern of decline in TRR levels at longer PBIs.

The distribution of radioactivity in rotated crop matrices, which were subjected to residue extraction, is presented in Tables C.2.2.1 (30-day PBI), C.2.2.2 (120-day PBI), and C.2.2.3 (365-day PBI). Solvent extraction released about 20-82% of TRR from crop matrices. Additional radioactivity (6-22% TRR) was released with acid and base hydrolysis; nonextractable residues were 9-101% TRR (<0.01-0.02 ppm). Material balances ranged 67-169% in the rotated crop matrices.

The characterization and identification of residues are summarized in Table C.2.3. Only the extracts of the 30-day PBI immature lettuce, immature carrot top, and barley forage samples and 120-day PBI barley straw samples were analyzed by HPLC for residue identification. The total identified residues comprised <7% of TRR in the analyzed matrices. The parent, 2,4-DB was not detected in any rotated crop matrices. Identified residues were each present at <0.01 ppm; 1,4-BQ was identified in immature lettuce (1.63% TRR) and barley straw (2.30% TRR); CHQ was identified in barley forage (2.34% TRR); and 2,3-Cl-4-HPAA was identified in barley forage (1.20% TRR) and straw (0.83% TRR). Metabolites (2,5-dichloro-4-hydroxy and 2,4-dichloro-3-hydroxy)phenoxy acetic acid and 2,5-dichloro-4-hydroxyphenol could not be separated for identification and were detected in barley straw at 2.54% TRR (<0.01 ppm). Metabolites (2,4-dichloro-3-hydroxy and 2,3-dichloro-4-hydroxy)phenol also could not be separated for identification and were detected at <0.01 ppm in barley forage (0.84% TRR) and straw (1.19% TRR). In addition, up to 3 unknowns were characterized in immature lettuce, immature carrot tops, barley forage, and barley straw; each unknown was present at ≤0.01 ppm.

Only the base hydrolysate of 120-day barley forage was analyzed by HPLC for metabolite identification. 2,4-Dichlorophenol was identified at 10.91% TRR (<0.01 ppm), and two unknowns accounting for 4.10% TRR (<0.01 ppm) were characterized.

2,4-DB/PC Code 030801/The 2,4-DB Task Force
OPPTS 860.1850
Confined A computation in Rotational Crops Region

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

Only the 365-day barley forage nonextractable residues were further characterized by cell wall fractionation. The nonextractable residues were characterized as primarily cellulose (~26% TRR) and hemicellulose (~7% TRR). Starch and pectin (each <1% TRR), protein (~2% TRR), and lignin (<2% TRR) were also observed at minor levels in the bound residues of barley forage.

The study submission provided data pertaining to characterization and identification of residues in soil which are not included in this Data Evaluation Record.

C.1. Storage Stability

Rotational crop samples were stored frozen prior to TRR determinations and extraction. All extracts were stored refrigerated until analysis; extraction and analysis dates were not provided. To demonstrate the stability of [\frac{14}{C}]2,4-DB in plant matrices, a sample of untreated immature barley forage (30-day PBI) was fortified at the field site with [\frac{14}{C}]2,4-DB and stored frozen for the duration of the study (1,089 days). The stored sample was extracted through the methanol:water steps and analyzed by HPLC. Analysis at the study conclusion, quantitated 83% 2,4-DB, 2% 2,4-dichlorophenol, 3% 2,4-dichlorophenoxy acetic acid, and 2% 4-chlorophenol. Approximately 10% of the radioactivity eluted early as a polar component. These data demonstrate that [\frac{14}{C}]2,4-DB is relatively stable in barley forage for up to ~36 months, and support the storage conditions and intervals of samples from the rotational crop study.

TABLE C.1. Sur	TABLE C.1. Summary of Storage Conditions									
Matrix [RAC or Extract]	Plantback interval (days)	Storage Temp.	Actual Storage Duration	Limit of Demonstrated Storage Stability						
Barley forage, straw, and grain; carrot tops and roots; lettuce	30, 120, 365	<-5 °C	Extraction and analysis dates were not provided; however the registrant stated that the study duration was ~36 months	1089 days (35.8 months) for [14C]2,4-DB in barley forage.						

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

C.2. Identification, Characterization, and Distribution of Residues

		TRR (ppm)		
Matrix	Plantback interval (days)	Immature Samples	Mature Samples		
Carrot, tops	30	0.02	0.01		
	120	0.03	0.02		
	365	0.01	0.01		
Carrot, roots	30	0.02	0.01		
	120	0.01	0.01		
	365	<0.01	<0.01		
Lettuce	30	0.05	0.03		
	120	0.02	0.02		
	365	0.01	0.01		
Barley, forage	30	0.06			
	120	0.03			
	365	0.02			
Barley, straw	30		0.01		
	120		0.07		
	365		0.02		
Barley, grain	30		0.01		
	120		0.03		
	365		0.01		

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

67

85

TABLE C.2.2.1. Distribution of the Parent and the Metabolites in Rotational Crop Matrices Planted 30 Days Following Application of [Phenyl-14Cl2.4-DB to the Soil. 1 Immature Lettuce Mature Lettuce Mature Carrot Tops Mature Carrot Root Immature Carrot Immature Carrot (30-day PBI) (30-day PBI) Tops (30-day PBI) Root (30-day PBI) (30-day PBI) (30-day PBI) Metabolite Fraction (TRR = 0.05 ppm)(TRR = 0.03 ppm)(TRR = 0.02 ppm)(TRR = 0.02 ppm)(TRR = 0.01 ppm)(TRR = 0.01 ppm)%TRR %TRR %TRR %TRR %TRR %TRR ppm ppm ppm ppm nngg mag Methanol:water 16 0.01 46 0.01 22 < 0.01 43 0.01 68 0.01 59 0.01 1,4-BO 1.63 < 0.01 Unknown I (Rt 5-6 mins) 12.51 0.01 Unknown 2 (Rt 6.5-7 mins) 22.00 < 0.01 __ Unknown 3 (Rt 7.5-8 mins) 1.87 < 0.01 Ethyl acetate 6 < 0.01 11 < 0.01 10 < 0.01 17 < 0.01 14 < 0.01 8 < 0.01 Acid (0.1 N HCl) hydrolysate 4 < 0.01 14 < 0.01 5 12 5 < 0.01 14 < 0.01 < 0.01 < 0.01 -Aqueous phase 7 < 0.01 -Organic phase 3 < 0.01 Base (0.1 N NaOH) hydrolysate < 0.01 6 4 5 < 0.01 3 < 0.01 < 0.01 6 < 0.01 8 < 0.01 -Aqueous phase 5 < 0.01 -Organic phase 6 < 0.01 Total extractable 30 < 0.02 76 < 0.02 78 < 0.02 40 < 0.01 93 0.01 89 0.01 Total identified 1.63 < 0.01 0 0 0 0 0 0 0 0 0 0 Total unidentified 28.38 < 0.02 76 < 0.02 40 < 0.01 78 < 0.02 93 89 0.01 0.01 Total bound residues (PES) 37 0.02 9 < 0.01 50 0.01 32 < 0.01 52 < 0.01 32 < 0.01

90

110

145

% Accountability

121

TABLE C.2.2.1. Distribution of the Parent and the Metabolites in Rotational Crop Matrices Planted 30 Days Following Application of [Phenyl-14C12.4-DB to the Soil (continued). 1 Barley Grain Barley Forage Barley Straw (30-day PBI) (30-day PBI) (30-day PBI) Metabolite Fraction (TRR = 0.01 ppm)(TRR = 0.01 ppm)(TRR = 0.06 ppm)%TRR %TRR ppm %TRR ppm ppm < 0.01 19 < 0.01 20 0.01 20 Methanol:water 2.34 CHO < 0.01 2.3-CI-4-HPAA 1.20 < 0.01 (2.4-dichloro-3-hydroxy or 2,3-dichloro-4-hydroxy)phenol 0.84 < 0.01 39.00 0.01 Unknown 1 (Rt 5-6 mins) 13.24 0.01 Unknown 3 (Rt 7.5-8 mins) 2.36 < 0.01 6 < 0.01 53 0.01 < 0.01 6 Ethyl acetate Acid (0.1 N HCl) hydrolysate 4 < 0.01 8 < 0.01 10 < 0.01 -Aqueous phase -Organic phase 7 < 0.01 2 < 0.01 < 0.01 Base (0.1 N NaOH) hydrolysate -Aqueous phase -Organic phase 79 0.01 Total extractable 36 < 0.02 42 < 0.01 0 Total identified 4.38 < 0.01 0 0 0 42 < 0.01 79 0.01 31.60 < 0.02 Total unidentified < 0.01 70 < 0.01 Total bound residues (PES) 32 0.02 45 87 149 % Accountability

Shading indicates that the extraction step and/or characterization analysis was not conducted for the matrix in question.

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

	Immatur Tops (120		Immature Root (120-					Forage ay PBI)	Barley (120-da		Barley Grain (120-day PBI)	
Metabolite Fraction	(TRR = 0	.03 ppm)	(TRR = 0.	01 ppm)	(TRR = 0.02 ppm)		(TRR = 0.03 ppm)		$(TRR \approx 0.07 \text{ ppm})$		(TRR = 0.03 ppn	
	%TRR	ppm	%TRR	ppm	%TRR	ppm	%TRR	ppm	%TRR	ppm	%TRR	ppm
Methanol:water	26	0.01	38	<0.01	31	0.01	24	0.01	22	0.01	16	0.01
1,4-BQ	100	and the second	THE STATE OF		isti Islada II	Tiggs.	Talah		2.30	< 0.01		
2,3-Cl-4-HPAA		High Control				170		i in	0.83	<0.01	A.	14
(2,5-dichloro-4-hydroxy <u>or</u> 2,4-dichloro-3-hydroxy) phenoxy acetic acid <u>or</u> 2,5-dichloro-4-hydroxyphenol	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								2.54	<0.01		
(2,4-dichloro-3-hydroxy or 2,3-dichloro-4-hydroxy)phenol			30.4 30.4 30.4			Fall			1.19	<0.01	19 12	
Unknown 1 (Rt 5-6 mins)	1 10 10 10 10 10 10 10 10 10 10 10 10 10	101 (1 T				10.			3.64	< 0.01		
Unknown 2 (Rt 6.5-7 mins)	ribility Control		10 Te						2.81	<0.01	ti Ma	
Unknown 3 (Rt 7.5-8 mins)	14	al a la		i i		ni a		7	4.68	< 0.01		
Ethyl acetate	6	< 0.01	9	< 0.01	8	<0.01	12	< 0.01	6	<0.01	4	< 0.01
Acid (0.1 N HCl) hydrolysate	6	< 0.01	14	< 0.01	5	< 0.01	7	<0.01	3	<0.01	1	< 0.01
-Aqueous phase			TENED IN	111111111111111111111111111111111111111		The state of the s	1	<0.01	hiji Jiji	1	(1)	179). 1784)
-Organic phase	of the second	jesti ji					1	< 0.01		11 PM		ger Historia A
Base (0.1 N NaOH) hydrolysate	5	<0.01	7	<0.01	7	<0.01	15	0.01	3	< 0.01	9	< 0.01
2,4-dichlorophenol	g Postaniani		ella Paragonal	Stony St. 4		1	10.91	< 0.01		rente.	ilisas:	700
Unknowns				111111111111111111111111111111111111111			4.10	< 0.01	400			nia.
-Aqueous phase		11-11-0				1.0	8	< 0.01		in problem		ing the mark
-Organic phase		Partiel Bar				NA.	3	<0.01		e Halle : Ladifor		
Total extractable	43	< 0.02	68	< 0.01	51	<0.02	58	<0.02	34	< 0.02	30	< 0.02
Total identified	0	0	0	0	0	0	10.91	<0.01	6.86	<0.01	0	0
Total unidentified	43	<0.02	68	<0.01	51	< 0.02	47.10	< 0.02	23.13	< 0.01	30	< 0.02

63

0.01

0.01

38

0.01

53

0.03

Total bound residues (PES)

66

0.02

101

0.01

38

TABLE C.2.2.2. Distribution of the Parent and the Metabolites in Rotational Crop Matrices Planted 120 Days Following Application of [Phenyl-14C]2,4-DB to the Soil. 1											
	Immature Carrot Tops (120-day PBI)	Immature Carrot Root (120-day PBI)	Mature Carrot Tops (120-day PBI)	Barley Forage (120-day PBI)	Barley Straw (120-day PBI)	Barley Grain (120-day PBI)					
Metabolite Fraction	(TDD = 0.02 mm)	(TDD = 0.01 npm)	(TDD == 0.03 nnm)	(TDD = 0.03 nnm)	(TPP = 0.07 ppm)	(TRR = 0.03 ppm)					

	Tops (120-day PBI)		Root (120-day PBI)		(120-day PBI)		(120-day PBI)		(120-day PBI)		(120-day PBI)		
	Metabolite Fraction	(TRR = 0.03 ppm)		(TRR = 0.01 ppm)		(TRR = 0.02 ppm)		(TRR = 0.03 ppm)		(TRR = 0.07 ppm)		(TRR = 0.03 ppm)	
		%TRR	ppm	%TRR	ppm	%TRR	ppm	%TRR	ppm	%TRR	ppm	%TRR	ppm
	% Accountability	10:	9	169		114		96		87		68	

Shading indicates that the extraction step and/or characterization analysis was not conducted for the matrix in question.

[Phenyl-14C]2,4-DB to the Soil. 1	Barley Forage	Barley Straw	Barley Straw (365-day PBI)			
Metabolite Fraction	(TRR =	(TRR = 0.02 ppm)				
	%TRR	ppm	%TRR	ppm		
Methanol:water	34	0.01	17	< 0.01		
Ethyl acetate	20	< 0.01	36	0.01		
Acid (0.1 N HCl) hydrolysate	5	< 0.01	3	< 0.01		
-Aqueous phase	2	<0.01				
-Organic phase	5	<0.01	POLITICAL PROPERTY OF THE PROP			
Base (0.1 N NaOH) hydrolysate	2	< 0.01	3	<0.01		
-Aqueous phase	3	<0.01				
-Organic phase	4	<0.01				
Nonextractable ²	37	0.01	58	0.01		
-Initial wash with potassium phosphate pH 7 buffer	< 0.37	NR ³				
-Starch	0.74	NR				
-Protein	2.22	NR				
-Pectin	0.37	NR				
-Lignin	1.48	NR				
-Hemicellulose	6.66	NR				
-Cellulose	25.9	NR				
Total extractable	61	<0.02	59	<0.02		
Total identified	0	0	0	0		
Total unidentified	61	<0.02	59	< 0.02		
Total bound residues (PES)	NR	NR	58	0.01		
% Accountability	98		1	117		

Shading indicates that the extraction step and/or characterization analysis was not conducted for the matrix in question.

Nonextractable residues were characterized by cell wall fractionation; % of total bound radioactivity was reported by the registrant and recalculated as % TRR by the study

2,4-DB/PC Code 030801/The 2,4-DB Task Force OPPTS 860.1850 Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

reviewer.

³ NR = Not reported.

TABLE C.2.3. Summary of Characterization and Identification of Radioactive Residues in Rotational Crop Matrices Following Application of Radiolabeled 2,4-DB to the Soil at 1.65 lb ai/A. 1						ı of						
	Immature Lettuce (30-day PBI) (TRR = 0.05 ppm)		Immature Carrot Tops (30-day PBI) (TRR = 0.02 ppm)		Barley Forage (30-day PBI) (TRR = 0.06 ppm)		Barley Forage (120-day PBI) (TRR = 0.03 ppm)		Barley Straw (120-day PBI) (TRR = 0.07 ppm)		Barley Forage (365-day PBI) (TRR = 0.02 ppm)	
Compound												
	% TRR	ppm	% TRR	ppm	% TRR	ppm	% TRR	ppm	% TRR	ppm	% TRR	ppm
1,4-BQ	1.63	< 0.01					pa est		2.30	<0.01		
CHQ				_	2.34	< 0.01						
2,3-Cl-4-HPAA		_	_		1.20	< 0.01			0.83	< 0.01		
2,4-dichlorophenol	_	_	-	_		_	10.91	< 0.01			2000年	
(2,5-dichloro-4-hydroxy <u>or</u> 2,4-dichloro-3-hydroxy)phenoxy acetic acid <u>or</u> 2,5-dichloro-4-hydroxyphenol	_		-	_	_	-	_	-	2.54	<0.01		
(2,4-dichloro-3-hydroxy or 2,3-dichloro-4-hydroxy)phenol					0.84	<0.01			1.19	<0.01		
Unknowns	14.38	<0.02	22.00	< 0.01	15.6	<0.01	4.10	< 0.01	11.13	< 0.01	ni.	
Methanol:water	_		_	_	_	-	24	0.01			34	0.01
Ethyl acetate	6	<0.01	10	< 0.01	6	< 0.01	12	<0.01	6	<0.01	20	< 0.01
Acid hydrolysate	4	<0.01	5	<0.01	8	< 0.01	7	< 0.01	3	< 0.01	5	<0.01
Base hydrolysate	4	<0.01	3	< 0.01	2	< 0.01			3	<0.01	2	< 0.01
Potassium phosphate wash		10 pp. 1	100	1460						1	< 0.37	NR
Starch								()()() (<u>)</u>			0.74	NR
Protein							A.	The state of the s	150 150 150 150 150 150 150 150 150 150		2.22	NR
Pectin		140	in 1905.		in in	11 - 15 3 4 33 7 17 - 35	770			fe. Tu	0.37	NR
Lignin	ried He	制制		THE STATE OF		M _e	4	原 私			1.48	NR
Hemicellulose			100	100 100		144					6.66	NR
Cellulose	1			A L						n i i i i i i i i i i i i i i i i i i i	25.9	NR
Total identified	1.63	<0.01	0	0	4.38	<0.01	10.91	<0.01	6.86	<0.01	0	0
Total characterized	28.38	<0.02	40	< 0.01	31.60	<0.02	47.10	<0.02	23.13	< 0.01	61	<0.02
Total extractable	30	<0.02	40	< 0.01	36	<0.02	58	<0.02	34	<0.02	61	< 0.02
Total bound	37	0.02	50	0.01	32	0.02	38	0.01	53	0.03	NR	NR

Shading indicates that the identification and/or characterization analysis was not conducted for the matrix in question. NR = Not reported.

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

C.3. Chemical Structures of Metabolites Identified from the Confined Rotational Crop Studies

FIGURE C.3.1. Proposed Metabolic Profile of 2,4-DB in Rotational Crops.

2,5-dichloro-4-hydroxyphenol

2,4-dichloro-3-hydroxyphenol

2,3-dichloro-4-hydroxyphenoxyacetic acid

	entification of Compounds from the Con	
Common name/code	Chemical name	Chemical structure
1,4-BQ	1,4-benzoquinone	
СНО	2-chloro-4-hydroxyphenol	OH CI
2,4-D phenol	2,4-dichlorophenol	OH CI
2,3-Cl-4-HPAA	2,3-dichloro-4-hydroxyphenoxyacetic acid	HO CI OH
2,5-Cl-4-HPAA	2,5-dichloro-4-hydroxyphenoxyacetic acid	HO CI OH
2,4-Cl-3-HPAA	2,4-dichloro-3-hydroxyphenoxyacetic acid	CI CI OH

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

TABLE C.3.1. Identification of Compounds from the Confined Rotational Crop Study				
Common name/code	Chemical name	Chemical structure		
2,5-СІ-4-НОН	2,5-dichloro-4-hydroxyphenol	OH Cl OH		
2,4-СІ-3-НОН	2,4-dichloro-3-hydroxyphenol	OH Cl OH		
2,3-Сі-4-НОН	2,3-dichloro-4-hydroxyphenol	HO CI OH		

D. CONCLUSION

Uniformly ring labeled [14 C]2,4-DB was applied to bare sandy loam soil at 1.65 lb ai/A. Following 30, 120, and 365 days of aging under outdoor conditions, barley, carrots, lettuce were sown onto the treated soil. TRR accumulated at \geq 0.01 ppm in various rotated crops planted at the 30, 120, and 365-day plantback intervals, but were very low (maximum of 0.07 ppm in 120-day barley straw).

Select samples from the 30-, 120-, and 365-day rotations were extracted with organic solvents and subjected to acid and base hydrolysis. Analysis of the extracts by HPLC identified the metabolites 1,4-BQ, CHQ, 2,3-Cl-4-HPAA, a mixture of (2,5-dichloro-4-hydroxy and 2,4-dichloro-3-hydroxy)phenoxy acetic acid with 2,5-dichloro-4-hydroxyphenol, and a mixture of (2,4-dichloro-3-hydroxy and 2,3-dichloro-4-hydroxy)phenol. 2,4-Dichlorophenol was also identified in the base hydrolysate of barley forage. The parent, 2,4-DB, was not identified in any rotated crop matrices. The nonextractable residues in barley forage were characterized as primarily cellulose and hemicellulose, with minor levels attributed to starch, protein, pectin, and lignin.

The confined rotational crop studies showed that no significant residues of 2,4-DB are taken up in succeeding rotational crops. The registrant proposes that the major metabolic pathways in

Confined Accumulation in Rotational Crops - Barley, Carrot, and Lettuce

rotational crop matrices encompass side chain degradation, chlorine shift and ring hydroxylation as demonstrated by the observed metabolites. β -oxidation of the side chain did not appear to be a metabolic pathway in rotational crops.

E. REFERENCES

None.

F. DOCUMENT TRACKING

RDI: J.Morales (10/21/03); W. Phang (11/13/03);

Petition Number(s): None DP Barcode(s): D290502

PC Code: 030801

Template Version April 2003

R096567

Chemical:

4-(2,4-Dichlorophenoxy)butyric acid

PC Code:

030801

HED File Code

11000 Chemistry Reviews

Memo Date:

11/13/2003

File ID:

DPD290502

Accession Number:

412-04-0139

HED Records Reference Center 06/03/2004